
Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 1 

Missing SQLite Records Analysis 
By: Shafik G. Punja & Ian Whiffin 

Background 
The SQLite database engine is one of the most widely used database formats, where its use can 
be found in countless areas such as web browsers, instant messengers, all smartphones, Mac 
computers, Windows 10 computers, also automotive infotainment systems, and surprisingly also 
found in smart television sets and cable boxes [1]. The utilization of SQLite databases across a 
wide spectrum of so many mediums, is due to its performance, reliability, portability, simplicity 
and accessibility of data. SQLite can be used as on disk application file format [2], or as an SQLite 
Archive (where the SQLite Archive is similar to a ZIP file or archive or Tarball) [3].  
 
This article will specifically discuss the identification of missing records, within the SQLite 
database in its use as an application file format. The various analysis tools that will be used to 
analyze missing records within SQLite databases will be noted throughout the article. The 
authors are working from the premise that recovery of deleted, partially recoverable, or wholly 
intact recoverable records, is no longer viable. What will not be covered is the explanation on 
the various methods to recover deleted records. For that we direct you to the only textbook on 
this subject authored in 2018 by Paul Sanderson, titled, SQLite Forensics.   

SQLite Database Structure Basics 
The SQLite database as a file on disk can consist of 3 separate files. There are, however, actually 
nine distinct types of temporary files that can be used by SQLite during database processing 
operations [5]. But for the purposes of this article, we will briefly mention the database file itself 
and the 3 types of temporary files (‘shm’, ‘wal’, and ‘journal’) that are most commonly 
encountered by digital forensics practitioners.  
 
1. The database file itself.  It can use various types of suffixes (listed below), or in some cases 

the SQLite database file will not have any suffix appended after the arbitrary prefix file name. 
o ‘*.db’, ’*.db3’, ‘*.sql’, ‘*.sqlite’, ‘*.sqlite2’, ‘*.sqlite3’, ‘*.sqlitedb’ 
o Example SQLite database filename: ‘sms.db’. 

 
2. The database write-ahead log (WAL) or journal file.  The use of either a WAL or roll back 

journal file is determined by the value within the SQLite database file at decimal offsets 18 
and 19.  The legacy refers to the use of a journal file. Both types of files (WAL and journal) 
serve the same purposes of ‘atomic commit’ and rollback, but both implemented in different 
ways. In addition to several other system level benefits over journal files, WAL files tend to 
perform faster [6].  

 
 

https://www.sqlite.org/index.html
https://www.sqlite.org/aff_short.html
https://www.sqlite.org/sqlar.html
https://www.amazon.com/SQLite-Forensics-Paul-Sanderson/dp/1980293074
https://sqlite.org/tempfiles.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/wal.html


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 2 

 
Figure 1: Screenshot sourced from: https://www.sqlite.org/fileformat2.html#vnums  

• If a WAL file is used by SQLite, then a digital forensics practitioner can potentially observe 
three files as shown in the screenshot below. 
 

 
Figure 2: history.db with WAL and SHM files 

• If the legacy rollback journal file is used by SQLite, then a digital forensics practitioner, 
can potentially observe two files as shown in the screenshot below. Note the absence of 
the shared memory (*.db-shm) file, as this type of temporary file is only used with WAL.  
 

 
Figure 3: main.db with journal file 

• WAL file: The WAL file can be found in filesystems where the database connection has 
not shutdown cleanly. This allows for potential recovery of live records that have not 
been committed to the database, or recovery of previously existing records that have 
been deleted and are no longer recoverable from the database itself, but all or part of 
the record resides in the WAL file. The WAL file can be recognized by the presence of  4 
characters, "-wal" appended to the end of the name of the main database filename [5]. 
Example WAL filename:‘sms.db-wal’.   

 

• Rollback Journal file: This rollback journal file provides another method of  ‘atomic 
commit’ and rollback method for SQLite database operations. An SQLite database journal 
file can be identified by the 8 characters "-journal" appended to the end of the filename 
[5]. Example ‘journal’ filename: ‘sms.db-journal’ 

https://www.sqlite.org/fileformat2.html#vnums
https://sqlite.org/tempfiles.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
https://sqlite.org/tempfiles.html


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 3 

 
3. The shared memory (‘shm’) file. This file does not contain any database content. If a 

database crash occurs, the  ‘shm’ file is not vital to the recovery of the database [4]. In the 
authors’ experience, the shared memory file has not been observed to be of investigative 
value. Example ‘shm’ filename: ‘sms.db-shm’.  
 

Database Header Structure, which is comprised of the first 100 bytes, can be thoroughly enjoyed 
by referring to this source: https://www.sqlite.org/fileformat2.html#vnums  
 
The SQLite database file header (or magic number) is 16 bytes in length, starting at decimal 
offset 0 (zero), can easily be recognized in ASCII as “SQLite format 3” (or in hexadecimal as 
53 51 4C 69 74 65 20 66 6F 72 6D 61 74 20 33 00). 

The Record Number Autoincrements 
The SQLite database itself consists of tables, where each table has rows of records with columns 
that describe the data within the rows. The SANS SQLite Pocket Reference Guide (created Lee 
Crognale, Heather Mahalik and Sarah Edwards) has a nice graphic that visually explains this [10]. 
 

 
Figure 4: SANS SQLite Pocket Reference Guide (created by Lee Crognale, Heather Mahalik, and Sarah Edwards) 

 
As stated on the ‘sqlite.org’ website: ‘All rows within SQLite tables have a 64-bit signed integer 
[primary] key that uniquely identifies the row within its table’. In other words, by default, every 
SQLite database has a ‘rowid’ column (or alternately may choose to use the PRIMARYKEY as a PK 
column)  that uniquely identifies a record within a specific row in the database itself [7]. Record 
numbering starts with a value of 1, and autoincrements with every new record that is created. 
The record numbers are therefore contiguous, with no gaps [8]. 
 

https://www.sqlite.org/walformat.html
https://www.sqlite.org/fileformat2.html#vnums
/Users/sasypjs/Desktop/https%20:/digital-forensics.sans.org/media/SQlite-PocketReference-final.pdf
https://www.sqlite.org/withoutrowid.html


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 4 

**Note: The reader should also be aware, there also exists the ability within an SQLite database to create a 
row, using ‘WITHOUT ROWID’ table method, that omits the creation of a ‘rowid’ column [7]. The ‘WITHOUT 
ROWID’ table method is not default behaviour for an SQLite database.**  

 
The following screenshot is an example of the ‘sms.db’ SQLite database file (from Cellebrite CTF 
of Ruth Langmore’s Apple iPhone X) opened with the ‘sms.db-wal’ present, using DB Browser for 
SQLite. This a great free open source cross platform application that can open an SQLite 
database file. The ‘sms.db’ SQLite database file Apple devices running iOS 14.x (or iPadOS 14.x) 
and lower, records SMS, MMS and iMessage activity for the native Messages application.  
 
The messages table shows the ROWID column which contains a total of 73 records. In the 
screenshot record numbers 1 through to 20 are displayed in a contiguous manner. There are no 
missing records from rows 1 to 73. We checked.   

 
Figure 5: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1, showing contiguous record numbers in 

the  ROWID column. 

 
 

https://www.sqlite.org/withoutrowid.html
https://sqlitebrowser.org/
https://sqlitebrowser.org/
https://sqlitebrowser.org/


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 5 

If the ‘sms.db’ SQLite database file (from Cellebrite CTF of Ruth Langmore’s Apple iPhone X) is 
opened with and without its associated WAL file, ‘sms.db-wal’, there is a difference in the 
number of contiguous records present in the messages table. Two copies of the ‘sms.db’ SQLite 
database were created in separate storage locations. The first copy did not have the associated 
WAL file, ‘sms.db-wal’ but the second copy did. Both ‘sms.db’ SQLite database files were opened 
in their own instances of DB Browser for SQLite as shown in the screenshots below. 
 
The ‘sms.db’ SQLite database file without its associated WAL file, ‘sms.db-wal’, presents with 65 
contiguous records in the messages table with ROWID column values from 1 through to 65. 
 

 
Figure 6: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1, no WAL. 

 

 

 

 

 

 

 

No WAL

https://sqlitebrowser.org/
https://sqlitebrowser.org/


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 6 

The ‘sms.db’ SQLite database file with its associated WAL file, ‘sms.db-wal’, presents with 73 
contiguous records in the messages table with ROWID values from 1 through to 73. Compared to 
the previous, that is a difference of 8 live records that were not committed (or merged) to the 
‘sms.db’ SQLite data, until it was opened with the associated WAL file, ‘sms.db-wal’ present.  
 

 
Figure 7: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1, with WAL. 

 

So, in this example, how important is the ‘sms.db-shm’ file? When the ‘sms.db’ SQLite database 
file is opened with its associated WAL and shm files present, the same number of records is 
observed as with WAL file only.  
 
 
 

https://sqlitebrowser.org/


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 7 

It is important to note also that the inverse can be true. The main SQLite database may contain 
data that gets removed once the WAL has been incorporated. The reason behind this is because 
there could be records that are assigned to be deleted from the main SQLite database, for which 
the write (delete record) operation has not been committed. The WAL contains all the pending 
write operations and as the delete operation is also a write, you will find them together with 
other writes in the WAL. So, in this case opening the main SQLite database with the WAL file will 
cause the records to be removed. 
 
To demonstrate this, we opened up a cache database from an iPhone both with and without 
processing the WAL file using using ArtEx  (developed by Ian Whiffin). When the WAL was 
processed, you can see that the ZRTCLLOCATION table contains 1303 records and that the first 
record is PK 15906 and the last PK is 17209, in the screenshot below. 
 

 
Figure 8: Screenshot of ArtEx with WAL parsing. 

Compared to without WAL parsing as shown below. When the WAL is not processed, you can 
see there are 1345 records, with a first and last PK or 15777 and 17121 respectively. 
 

 
Figure 9: Screenshot of ArtEx without WAL parsing. 

http://doubleblak.com/index.php


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 8 

 
This makes perfect sense. When the WAL commit occurs, records 15777 through to 15905 are 
deleted (a loss of 129 records) but records 17122 to 17209 are created (a gain of 88 records). 
This leaves us with a net loss of 41 records. But the net difference really isn’t the point (After all, 
a single record could make all the difference when it comes to evidence). The point is that many 
tools automatically process the WAL (if present) and will therefore risk the loss of data by record 
deletion. But you cannot afford to ignore the WAL as it may contain new records that you may 
need. 
 
Once the connection to the ‘sms.db’ SQLite database is closed, both the ‘sms.db-wal’ file and 
‘sms.db-shm’ files, were observed to be removed from the locations they were copied to, as the 
changes have been committed or merged within the ‘sms.db’ file. 
 
The good news for digital forensics practitioners, is that most (if surely not all) digital forensics 
products, incorporate the associated WAL (or the rollback journal) file, as part of the analysis 
process, in order to identify as many unmerged live, unique records as possible. The authors’ in 
this context, are not taking into account the recovery of deleted records from the freelist space 
specific to the SQLite database or from within the WAL (or the rollback journal) file itself. What 
we are unable to say is exactly which digital forensics products clearly identify, unmerged live 
records from the WAL 
 
If the digital forensics practitioner elects to export a SQLite database file, out of their chosen 
digital forensics analysis platform, for review in any free open source tool, as demonstrated 
above, it is important to understand the associated WAL (or the rollback journal) and to know if 
you want to include it or not. As a caution to the reader, any free open source tools also have 
the ability to cause write changes to the SQLite database, as opposed to those SQLite database 
analysis tools that are part of a digital forensics tool suite.  

Deleted SQLite Records 
As smartphone operating systems evolve, the ability to recover deleted records from SQLite 
databases becomes increasingly more difficult. Generally speaking, until the SQLite database is 
fully vacuumed and defragmented, deleted (not live) records can be recovered. Once the 
vacuum and defragmenting operation occurs (transparent to the device user), deleted (not live) 
records are permanently removed, at which point there is no hope in any record recovery [11].  
 
Take for example pre Apple iOS 12, where recovery of deleted records related to text messages 
and iMessages is more likely, as the deleted records were not immediately wiped. As of iOS 12 
and newer the deleted text messages and iMessages are wiped almost immediately after 
deletion, and cannot be recovered from the SQLite database [11]. 
 
When a record is deleted, regardless of whether it can be recovered or not, the contiguous 
numbering sequence is broken, and gaps start to appear in the ROWID numbers. This leads to 
the actual point of the article, which is the analysis of the missing records from a specific table 
within an SQLite database file. 

https://blog.elcomsoft.com/2020/07/the-iphone-data-recovery-myth-what-you-can-and-cannot-recover/
https://blog.elcomsoft.com/2020/07/the-iphone-data-recovery-myth-what-you-can-and-cannot-recover/


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 9 

Missing SQLite Records 
The identification of non-contiguous numbering sequences in the record numbers, within an 
SQLite database can be useful for identifying a missing record. For example, a missing record in 
the SMS database may signify a deleted message or a missing record from the call history table 
may signify a missing call record. 
 

 
Figure 10: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing a missing call record in the 

CallHistory.storedata database (from Cellebrite CTF of Ruth Langmore’s Apple iPhone X). 

For tables with timestamps, it may be useful to work out the time period that the deleted record 
was made. As the records are created consecutively, it stands the reason that the records are 
created in time order. Therefore, the missing record was made after the previous record but 
before the next. This may not always be the case and should be applied on a table-by-table basis. 
 
Also note that this refers to the time that the record was made in the database, not necessarily 
the time the record was deleted or even the time that something occurred. SMS for example 
may be delayed in transit, and so the time received may be much later than the time it was sent. 

https://sqlitebrowser.org/


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 10 

This has been addressed in a blog post authored by Ian Whiffin titled, “Primary Key / Date Stamp 
fallacy” (http://doubleblak.com/blog/primarykeyfallacy). 
 
You may also want to take this further and explore other associated tables to see if there is any 
correlation you can make with the time period of the missing record(s). For example, are there 
any notifications, application use, sounds etc. made that could give you additional clues about 
the missing record.  
 
You are unlikely to get as much information from a missing record as you would like; but that 
doesn’t mean you can’t get anything. This technique is easy when you have an obviously missing 
record, but sometimes the missing record isn’t quite so obvious.   
 
In the screenshot shown below, in the CallHistory.storedata database, ZCALLRECORD table , 
(from Cellebrite CTF of Ruth Langmore’s Apple iPhone X) the missing record is actually AFTER the 
last record being displayed. It isn’t immediately apparent as there is no record after it.  
 

 
Figure 11: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing a missing record after the last 

used record in the CallHistory.storedata database (from Cellebrite CTF of Ruth Langmore’s Apple iPhone X). 

 

http://doubleblak.com/blog/primarykeyfallacy
http://doubleblak.com/blog/primarykeyfallacy
http://doubleblak.com/blog/primarykeyfallacy
https://sqlitebrowser.org/


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 11 

What we have to do in this case is try to find the last generated record value in use within the 
table of interest. In this case, the  Z_PRIMARYKEY table helps identify the last generated record 
value in use as record 15, and the last observed record in the Z_PK column, in the ZCALLRECORD 
table is 14. The reader should note that the authors intentionally deleted the last record, 
number 15 (row 14) to demonstrate the last record number used value can be one higher than 
the observed record number in its respective table.  
 
In most cases, you may find a table called “sqlite_sequence” as an internal table within the 
database. The sqlite_sequence table is an internal table maintained by the SQLite database. It is 
automatically created by the SQLite database when there are fields in tables that have the 
AUTOINCREMENT keyword set [12].  
 
Now let’s try and locate the “sqlite_sequence” table. One approach is to query a list of all the 
tables present within an SQLite database.  The following custom query will list all tables present 
in the SQLite database: 
 
SELECT name FROM sqlite_master WHERE TYPE = 'table' 

 

Using the ‘sms.db’ SQLite database file (from Cellebrite CTF of Ruth Langmore’s Apple iPhone X) 
with its associated WAL file, a list of tables is returned, where the name of each table is being 
returned, and presented in non-alphabetical order.  
 

https://sqlite.org/autoinc.html


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 12 

 
Figure 12: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing search for all tables query. 

 

With a slight variation to the previously shown query, the list of tables can be alphabetically 
ordered by name where the ‘ORDER BY name’ has been added.  
 
SELECT  * FROM sqlite_master WHERE TYPE = 'table' ORDER BY name 

 
 
 
 
 
 
 

https://sqlitebrowser.org/


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 13 

If you skip the first aforementioned approach, you can presume the internal sqlite_sequence 
table exists, and try to directly call the sqlite_sequence table using the next query. This will 
return a list of all the tables with their respective sequence (seq) values that are currently in use. 
 
SELECT * from sqlite_sequence 

 

Using the ‘sms.db’ SQLite database file (from Cellebrite CTF of Ruth Langmore’s Apple iPhone X) 
with its associated WAL file, the screenshot below shows SQL query being used in DB Browser for 
SQLite v 3.12.1 on macOS 11.0.1. With successful execution of the query, you should now see all 
the tables in your database. Looking through the tables, it should be obvious which table you are 
interested in.  
 

 
Figure 13: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing “sqlite_sequence” query. 

 

The “name” column shows you the names of tables that have automatically incrementing fields. 
The “seq” column shows you the latest id of that field. In the “messages” table, this means that 
the latest in-use sequence record number  is 73. Thus, if you were to add a new row into the 
messages table, it would be assigned record number 74 and the “seq” field would be updated in 
the sqlite_sequence table to reflect the new record number. 
 

https://sqlitebrowser.org/


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 14 

You may ask what if there is no “sqlite_sequence” table. The “sqlite_sequence” table exists to 
handle the task of counting records. By using the AUTOINCREMENT field, the developer can 
offload the counting process to the SQLite database. The database will increment the record id 
sequentially. If a field with AUTOINCREMENT exists, then SQLite will not allow you to drop the 
“sqlite_sequence” table. If you do not find an “sqlite_sequence” table, then chances are the app 
isn’t using an AUTOINCREMENT field. In this case, it is incumbent upon the developer to handle 
the record counting. 
 
The ‘CallHistory.storedata’ SQLite database, (from Cellebrite CTF of Ruth Langmore’s Apple 
iPhone X) is a great example of where there is no “sqlite_sequence” table, that is used to identify 
the current record in use within the tables present in the database. Instead, what is being used is 
the Z_PRIMARYKEY table that performs this function. The next screenshot shows the custom 
query search for the tables in the database. There are a total of 7 tables present, none of which 
are the “sqlite_sequence” table.  
 

 
Figure 14: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing the Z_PRIMARYKEY table listed, 

from Cellebrite CTF of Ruth Langmore’s Apple iPhone X. 

 

 

 

 

https://sqlitebrowser.org/


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 15 

There is however the Z_PRIMARYKEY table, as shown in the screenshot below, which provides 
essentially the same information as the “sqlite_sequence” table. The Z_MAX column in this case 
is used to identify the current record number in use within each of the tables in the 
‘CallHistory.storedata’ SQLite database. 
 

 
Figure 15: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing the structure of the 

Z_PRIMARYKEY table, from Cellebrite CTF of Ruth Langmore’s Apple iPhone X 

 
The ‘CallRecord’ table, under the Z_NAME column, from the previous screenshot, shows a 
Z_MAX value of 15. In comparison to the next screenshot of the ZCALLRECORD table, we can see 
that there are indeed 15 records that have been created thus far in this table, but only 14 rows 
of records are displayed.  

 
Figure 16: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing the structure of the 

ZCALLRECORD table, from Cellebrite CTF of Ruth Langmore’s Apple iPhone X. 

https://sqlitebrowser.org/
https://sqlitebrowser.org/


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 16 

 

Don’t focus on the row count but rather on the Z_PK column value, which is the record number 
(and is an alias for the ROWID column), which in this case identifies each unique record. There 
are 14 rows of records because the Z_PK column of the ZCALLRECORD table, has a gap between 
record 2 and record 4. Record 3 has been deleted! The use of the ‘Z_’ prefix column and table 
names appears to be unique to the Apple ecosystem itself. So, you may not see Z_’ prefix column 
and table names in non-Apple SQLite databases. 
 
Quick tip about the PRIMARY KEY table, cited directly from https://www.sqlitetutorial.net/sqlite-
primary-key/: “If a table has the primary key that consists of one column, and that column is 
defined as INTEGER then this primary key column becomes an alias for the rowid column.” 
 

We have now learned how to identify a list of tables, and the current ‘seq’ (sequence) record 
value or PRIMARY KEY (PK) record number, that is in use, for tables within an SQLite database. 
Remember that a key principle in the operation of SQLite databases is the record value 
increments by one for every record added to the table, starting at record 1. Once a record 
number is deleted that record number value is never reused within an SQLite database. So, a 
table with a record value of 100 would be expected to have 100 records. This means that if there 
are only 99 records, and 1 through 99 are contiguous, then it must be record 100 that is missing. 
 
This came in useful for Ian on a case where the user had deleted the incriminating photograph, 
which just so happened to be the last photograph taken. Using the ‘seq’ (sequence) record 
value, Ian was able to identify that there was a missing photograph, and due to the incremental 
way that iOS names photographs, he could work the name of the missing photograph itself. This 
led to finding the image as an email attachment that he was able to recover. 

Missing Record Analysis  
In this section we are going to be actually analyzing the missing records that exist within the 
‘CallHistory.storedata’ SQLite database file from Josh Hickman’s iOS 13.4.1 Public Image.  This is 
a full file system extraction of an iPhone device, and therefore does contain the associated WAL 
file. 
 
A quick check of the Z_PRIMARYKEY table, shows the ‘CallRecord’ table is currently using record 
65, as identified in the Z_MAX column. We should, therefore, expect to see a record with a value 
of  65 in the Z_PK column of the  ZCALLRECORD table, which we don’t. Instead, we see a value of 
64. 

https://www.sqlitetutorial.net/sqlite-primary-key/
https://www.sqlitetutorial.net/sqlite-primary-key/
https://thebinaryhick.blog/?s=13.4.1


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 17 

 
Figure 17: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing the last record number 64 with 

record value 65 missing from the ZCALLRECORD table, from Josh Hickman’s iOS 13.4.1 Public Image. 

You should also have observed, from the above screenshot the evident disparity between the 
row number 37 and record number 64. This is a clear indication of the missing records within the 
ZCALLRECORD table of the ‘CallHistory.storedata’ SQLite database file. 
 

Missing Record Finder 
It is possible to automate the analysis of missing records from an SQLite database. The next 
several screenshots show an example of a Windows based tool called Missing Record Finder 
developed by Ian Whiffin. He developed it when we worked together at our former law 
enforcement agency’s digital forensics lab. At this time, Missing Record Finder is not publicly 
available.  

https://sqlitebrowser.org/


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 18 

Missing Record Finder v 1.7 simply checks for consecutive numbers in the relevant supported 
SQLite database tables. It does not attempt data recovery or comparisons. It also does not take 
the into account any unmerged live records from the WAL (or journal) file. 
 
In this screenshot below, the left aspect of shows the Missing Record Finder 1.7, that has 
identified (without the WAL file) 35 existing records in the ZCALLRECORD table of the 
‘CallHistory.storedata’ SQLite database file. The right aspect of the screenshot shows the same 
database opened with WAL file present, displaying the ZCALLRECORD table, in DB Browser for 
SQLite, presenting 37 existing records. 
 

 
Figure 18: Missing Record Finder 1.7 showing presence of missing records within the ZCALLRECORD table of the 

‘CallHistory.storedata’ SQLite database file. 

 



Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 19 

The visual representation of missing records in Missing Record Finder 1.7 is an invaluable aid in 
understanding how many records are missing, in between specific time periods relative to 
existing records. What Missing Record Finder 1.7 does not do is identify missing records prior to 
the oldest existing record, or the very last missing record after the most recent existing record. 
 
Another nice feature in the Missing Record Finder 1.7 output is displaying the SQLite custom 
queries that were used and a summary of missing records between date ranges. The date ranges 
are determined from existing records. 
 

 
Figure 19: Missing Record Finder 1.7 showing a summary of missing records and the custom SQL query used to identify missing 
records in the ZCALLRECORD table of the ‘CallHistory.storedata’ SQLite database file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 20 

ArtEx 
Next, using ArtEx 1.5.1.0, a free open source iOS analysis tool (developed by Ian Whiffin), the 
‘CallHistory.storedata’ SQLite database file was analyzed for missing records, from Josh 
Hickman’s iOS 13.4.1 full file system (FFS) extraction. ArtEx is a Windows only tool, and was used, 
in this example, on Windows 10 20H2 (OS Build 19042.30) through VMFusion 12.1.0, running on 
macOS 11.0.1. It only accepts data from iOS full file system (FFS) extractions. It is not possible, to 
analyze a single SQLite database with ArtEx.  
 
The following screenshot, in ArtEx, shows the existing call records parsed with identification of 
missing records, interjected in between existing records, based on the respective missing record 
number. In this view ArtEx currently does not show the missing records previous to the oldest 
existing record or after the most recent existing record.  The record found count includes the 
existing and missing (not including the missing records previous to the oldest existing record or 
after the most recent existing record).   
 

 
Figure 20: ArtEx 1.5.1.0 showing parsed existing and missing  call records from ‘CallHistory.storedata’ SQLite database. 

 

 

 

 

 

 

 

 

 

 

 

 

http://doubleblak.com/index.php


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 21 

Within ArtEx, the SQLite viewer can be invoked either in two ways. First, through the Source 
column interface as shown in the screenshot above. If you prefer to analyze the SQLite database 
and its associated WAL file, then use the ‘Directory View’ method, as shown in the screenshot 
below. 
 

 
Figure 21: ArtEx 1.5.1.0 showing how to access Directory View. 

 
Once ‘Directory View’ is opened, enter the database name and then click on ‘Search Results’ 
button. From the search results windows, click on the name of the SQLite database under the 
‘FileName’ column to open the SQLite Viewer.  
 

 
Figure 22: ArtEx 1.5.1.0 in Directory Tree view searching for CallHistory.storedata database. 

 
 
 
 



Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 22 

 
The next screenshot shows the CallHistory.storedata SQLite database opened in SQLite Viewer 
(within ArtEx). There are 3 tabs from left to right. With WAL, Without WAL and WAL comparison. 
The missing records are not yet identified as that function must be initiated by the examiner.  
Make sure to first, select the database table you want to examine for missing records. Second, 
click on ‘Find Missing Records’.  
 

 
Figure 23: ArtEx 1.5.1.0  showing ‘CallHistory.storedata’ SQLite database open in SQLite Viewer, with 3 tabs: With WAL, 

Without WAL and WAL comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 23 

After running the ‘Find Missing Records’ button, if missing records are identified, that are prior 
to the oldest existing record, in this case record 12, a message window will appear that identifies 
how many records were found to be missing but are not shown. The reason behind this is that if 
there are thousands of missing records prior to the oldest existing record, the digital forensics 
practitioner is made aware of it, as ArtEx only visually identifies missing records from the oldest 
existing record going forward to the most recent existing record.   
 

 
Figure 24: ArtEx 1.5.1.0, Find Missing Records function has been run on ‘ZCALLRECORD’ table (‘‘CallHistory.storedata’ SQLite 

database), WAL tab. 

 

After the message windows (from the previous screenshot) has been acknowledged, the visual 
representation of missing records, highlighted as red coloured rows, can be observed. 
 

 

 

 

 

 

 

 

 

 

 

 

 



Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 24 

The ‘With WAL’ tab shows the merged (added and removed) records between the WAL file and 
the database together, against all the tables within the database. This next screenshot shows 37 
existing records, and 28 missing records found in the ZCALLRECORD table (‘CallHistory.storedata’ 
SQLite database). Missing record 65 is observed after the most recent existing record 64. (You 
can refer back to the screenshot in Figure 15 which shows this too, in DB Viewer for SQLite). 
 

 
Figure 25: ArtEx 1.5.1.0, most recent record is identified as a missing record in the ZCALLRECORD table  

(‘CallHistory.storedata’ SQLite database), WAL tab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 25 

The ‘Without WAL’ tab is the SQLite database only. The screenshot below, shows that the 
ZCALLRECORD table is an empty table, with zero (0) records. This means that the 
‘CallHistory.storedata’ SQLite database file (without the WAL) contains no records! All the 
records have come from the WAL file. This allows you to infer the actual write (commit) 
operations to the SQLite database file have not yet taken place.  
 

 
Figure 26: ArtEx 1.5.1.0, Find Missing Records function has been run on ‘ZCALLRECORD’ table (‘‘CallHistory.storedata’ 

SQLite database), Without WAL tab. 

 

 

 

 

 

 

 

 

 

 

 

 



Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 26 

Trust but verify! The next screenshot shows the ZCALLRECORD table from ‘CallHistory.storedata’ 
SQLite database file (without the WAL), opened in DB Browser for SQLite. We just verified that 
there are no records present in the actual database file.    
 

 
Figure 27: DB Browser for SQLite 3.12.1 showing no records in the ZCALLRECORD table from ‘CallHistory.storedata’ SQLite 

database file (without the WAL). 

The ‘WAL Comparison’ tab provides a nice summary snapshot of all the tables in the SQLite 
database, being examined, and record number count with WAL and without WAL.   
 

 
 

Figure 28: ArtEx 1.5.1.0 shows ‘CallHistory.storedata’ SQLite database, with identification of missing records 

 



Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 27 

mirf (missing record finder) 
This is an agnostic, free open source script, developed using Python 3, by Sheran Gunasekera 
which is available at https://github.com/sheran/mirf. The development of ‘mirf’ was inspired by 
the missing record analysis features in ArtEx. In its current iteration, ‘mirf’ is only designed to 
parse the ‘CallHistory.storedata’ and ‘sms.db’ SQLite database files that are exported from iOS 
full file system extractions. It uses a predefined template to understand the structure of these 
two aforementioned SQLite database files.  
 
The following screenshot of the Terminal app (on macOS 11.1) shows Python 3.9.0 (invoked 
through a pyenv environment) executing the ‘mirf.py’ script, to analyse a sms.db SQLite 
database file (exported from Josh Hickman’s iOS 13.4.1 full file system (FFS) extraction) for 
missing records. The analysis results are straight forward and easy to interpret. In this case 2 
missing records are identified, including date ranges in UTC, and the missing record number.  
 

 
Figure 29: mirf.py analyzing sms.db (exported from Josh Hickman’s iOS 13.4.1 full file system (FFS) extraction) which contains 2 

missing records. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/sheran/mirf


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 28 

The next screenshot shows the ‘mirf.py’ script being run (in the same environment as previously 
noted), analysing the ‘CallHistory.storedata’ SQLite database files (exported from Josh Hickman’s 
iOS 13.4.1 full file system (FFS) extraction) for missing records. The analysis of this database 
shows that there is a total of 28 missing records. The Missing Records List shows the details of all 
missing records. For example, that records 1 through 11 are missing from before 20:02:52 on 
23rd March 2020 (UTC). Also note that in relation to the Last Record ID value that was used for 
ZCALLRECORD table is 65, relative to the Last Record ID value of 64 that is present.  This means 
the last record in the ZCALLRECORD table is missing.  
 

 
Figure 30: mirf.py analyzing ‘CallHistory.storedata’ (exported from Josh Hickman’s iOS 13.4.1 full file system (FFS) extraction) 

which contains 28 missing records. 

 

 

It is anticipated that further development of ‘mirf.py’ will take place to allow for a guided  (versus 
template) mode of analysis of missing records from any SQLite database. This method of analysis 
would rely on the digital forensics practitioner, based on prompts from analysis tool, to identify 
the relevant tables(s) and their respective fields to be analysed.  
 
 



Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 29 

Final Thoughts 
The purpose behind the reader having to understand the pages of a sometimes dry and 
somewhat challenging concept of SQLite databases, is to make the digital forensics practitioner 
aware of the value of missing records analysis. 
 
After processing and understanding the concepts explained in the previous pages, there are 
generalized inferences about missing records, that can be explained as follows: 
 

1. An identified missing record, that is after the most recent existing record, indicates with a 
high degree of professional certainty that the device user has intentionally deleted a 
record.  
 

2. Equally, a group of missing records that exist between a set of two existing records, 
indicates with a high degree of professional certainty that the device user has 
intentionally deleted these records. 

 
3. If timestamps are present for existing records, this provides a temporal context relative 

to the existing records, of when the missing/deleted records were originally created.  
 

4. The exact date and time, a missing record was deleted cannot be ascertained. 
 

5. Who performed the action of deleting records cannot be ascertained from the 
identification of missing records alone. 
 

6. If a database table is empty and missing records are identified, in conjunction with the 
presence of the most recent record value in use, this would indicate with a high degree 
of professional certainty that the device user has intentionally deleted these records. 

 
While the absence of a record number signifies deletion of a row, it is incumbent on the digital 
forensics practitioner to distinguish between system deleted or user deleted records. This can 
only really be done by determining if the user has access to the database in question. For 
example, a record from an SMS database would be deleted when the user deletes the message. 
But system databases aren’t typically accessible to the user so deleted records here would be 
assumed to be system deleted. Furthermore, if possible, application settings should also be 
checked on the device and/or in the application structure (from the extracted data), in order to 
determine how long data is specifically retained by that application. These settings can greatly 
influence in determining whether the presence of missing records in an SQLite database are 
caused by the actions of the device user or by the device itself. 
 
Finally, thank you for taking the to read this article and we hope you enjoyed it and learned 
concepts that you can use your digital forensics tradecraft! 

 



Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 30 

Sources/References 
 

1. SQLite: https://www.sqlite.org/index.html  
 

2. SQLite Application File Format: https://www.sqlite.org/aff_short.html 
 
3. SQLite Archive Files: https://www.sqlite.org/sqlar.html  
 
4. wal and shm files : https://www.sqlite.org/walformat.html 
 
5. Temporary Files Used By SQLite: https://sqlite.org/tempfiles.html 
 
6. Write-Ahead Logging: https://www.sqlite.org/wal.html 
 
7. Clustered Indexes and the WITHOUT ROWID Optimization:  

https://www.sqlite.org/withoutrowid.html  
 
8. Sanderson, P. (2018). SQLite Forensics (1st ed.). Paul Sanderson.  
 

Page 268 Paraphrased: The ROWID value, is an integer primary key that is defined as autoincrement. This 
ensures that each new record added to the database will have a unique key that is one more than the 
previously used maximum value.  The ROWID integer primary key values are therefore contiguous, with no gaps 
in the integer values.  

 
9. Sanderson, P. (2018). SQLite Forensics (1st ed.). Paul Sanderson.  

 
Page 69 Paraphrased: Implemented in SQLite version 3.3.5, ‘secure_delete’ status is not stored in the SQLite 
database; when investigating an SQLite database, there is nothing that a digital forensics practitioner can check 
to ascertain if secure delete is enabled. If an SQLite database is compiled with the ‘secure_delete’ option, then 
deleted records are overwritten with zeroes.  

 
10. SQLite POCKET REFERENCE GUIDE (by Lee Crognale, Heather Mahalik and Sarah Edwards): 

https ://digital-forensics.sans.org/media/SQlite-PocketReference-final.pdf  
 

 
 
 
 
 
 
 
 
 
 
 

https://www.sqlite.org/index.html
https://www.sqlite.org/aff_short.html
https://www.sqlite.org/sqlar.html
https://www.sqlite.org/walformat.html
https://sqlite.org/tempfiles.html
https://www.sqlite.org/wal.html
https://www.sqlite.org/withoutrowid.html
https://digital-forensics.sans.org/media/SQlite-PocketReference-final.pdf


Authored by Shafik G. Punja & Ian Whiffin 
V 2.7 
  

 31 

11. The iPhone Data Recovery Myth: What You Can and Cannot Recover (July 10th, 2020 by Oleg 
Afonin):  https://blog.elcomsoft.com/2020/07/the-iphone-data-recovery-myth-what-you-
can-and-cannot-recover/  

 
“Your text messages and iMessages are stored in a database in the SQLite format. By default, SQLite does not 
overwrite records immediately after they’ve been deleted. Instead, SQLite marks them as “deleted”. Deleted 
pages become unused and are stored on what is called a “freelist”. If you obtain the database files (by making a 
backup), these records can be recovered until the moment the database is fully vacuumed and defragmented (if 
it is, the deletion becomes permanent). This used to be the case in iOS 8 through iOS 11.  Starting with iOS 12, 
Apple seemingly moved to a non-standard implementation, physically wiping records almost immediately after 
they are deleted. As a result, deleted text messages and iMessages cannot be recovered in iOS 12, 13 and 
newer.” 

 
“The one problem of recovering deleted records (be it messages, call logs or contacts) is the volatile nature of 
SQLite databases in modern versions of iOS. The only easy way to obtain SQLite databases from the device is 
making an iTunes backup. Until you make the backup, the databases are used with unmerged WAL (write-ahead 
logs), and However, the very moment you initiate the backup, the SQLite databases are merged, and the 
deleted records are lost forever.” 

 

12. SQLite Autoincrement: https://sqlite.org/autoinc.html 
 

13. ArtEx by Ian Whiffin (registration required): https://www.doubleblak.com/  
 

14. Josh Hickman’s iOS 13.4.1 Public Image: https://thebinaryhick.blog/?s=13.4.1 
 

15. Missing Record Finder Python 3 script, mirf.py: https://github.com/sheran/mirf 

Acknowledgements 
The authors would like to thank Sheran Gunasekera for taking the time to review this article and 
providing guidance. Over 10 years ago Sheran and Shafik collaborated extensively on BlackBerry 
Forensics research and recovery of SQLite deleted records.  
 

Sheran is also the author of two Android App Security books: 
 
1. Blue Team perspective published in September 2012.  

Android Apps Security Blue:  
https://www.amazon.ca/Android-Apps-Security-Sheran-Gunasekera/dp/1430240628  

 

2. Red Team perspective published November 2020: 
Android Apps Security: Mitigate Hacking Attacks and Security Breaches 
https://www.amazon.ca/Learn-Android-Security-Stack-Zhauniarovich/dp/1484216814 

 

 
 

https://blog.elcomsoft.com/2020/07/the-iphone-data-recovery-myth-what-you-can-and-cannot-recover/
https://blog.elcomsoft.com/2020/07/the-iphone-data-recovery-myth-what-you-can-and-cannot-recover/
https://sqlite.org/autoinc.html
https://www.doubleblak.com/
https://thebinaryhick.blog/?s=13.4.1
https://github.com/sheran/mirf
https://www.amazon.ca/Android-Apps-Security-Sheran-Gunasekera/dp/1430240628
https://www.amazon.ca/Learn-Android-Security-Stack-Zhauniarovich/dp/1484216814

	Missing SQLite Records Analysis
	Background
	SQLite Database Structure Basics
	The Record Number Autoincrements
	Deleted SQLite Records
	Missing SQLite Records
	Missing Record Analysis
	Missing Record Finder
	ArtEx
	mirf (missing record finder)

	Final Thoughts
	Sources/References
	Acknowledgements

