Authored by Shafik G. Punja & lan Whiffin
V2.7

Missing SQLite Records Analysis
By: Shafik G. Punja & lan Whiffin

Background

The SQLite database engine is one of the most widely used database formats, where its use can
be found in countless areas such as web browsers, instant messengers, all smartphones, Mac
computers, Windows 10 computers, also automotive infotainment systems, and surprisingly also
found in smart television sets and cable boxes [1]. The utilization of SQLite databases across a
wide spectrum of so many mediums, is due to its performance, reliability, portability, simplicity
and accessibility of data. SQLite can be used as on disk application file format [2], or as an SQLite
Archive (where the SQLite Archive is similar to a ZIP file or archive or Tarball) [3].

This article will specifically discuss the identification of missing records, within the SQlite
database in its use as an application file format. The various analysis tools that will be used to
analyze missing records within SQLite databases will be noted throughout the article. The
authors are working from the premise that recovery of deleted, partially recoverable, or wholly
intact recoverable records, is no longer viable. What will not be covered is the explanation on
the various methods to recover deleted records. For that we direct you to the only textbook on
this subject authored in 2018 by Paul Sanderson, titled, SQLite Forensics.

SQLite Database Structure Basics

The SQLite database as a file on disk can consist of 3 separate files. There are, however, actually
nine distinct types of temporary files that can be used by SQLite during database processing
operations [5]. But for the purposes of this article, we will briefly mention the database file itself
and the 3 types of temporary files (‘shm’, ‘wal’, and ‘journal’) that are most commonly
encountered by digital forensics practitioners.

1. The database file itself. It can use various types of suffixes (listed below), or in some cases
the SQLite database file will not have any suffix appended after the arbitrary prefix file name.
o ‘“*.db’,’*.db3’, *.sqgl’, “*.sqlite’, “*.sqglite2’, “*.sqlite3’, “*.sqglitedb’
o Example SQlite database filename: ‘sms.db’.

2. The database write-ahead log (WAL) or journal file. The use of either a WAL or roll back
journal file is determined by the value within the SQLite database file at decimal offsets 18
and 19. The legacy refers to the use of a journal file. Both types of files (WAL and journal)
serve the same purposes of ‘atomic commit’ and rollback, but both implemented in different
ways. In addition to several other system level benefits over journal files, WAL files tend to
perform faster [6].

https://www.sqlite.org/index.html
https://www.sqlite.org/aff_short.html
https://www.sqlite.org/sqlar.html
https://www.amazon.com/SQLite-Forensics-Paul-Sanderson/dp/1980293074
https://sqlite.org/tempfiles.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/wal.html

Authored by Shafik G. Punja & lan Whiffin
V2.7

Database Header Format

Offset | Size | Description

0 16 The header string: "SQLite format 3\000"

16 2 The database page size in bytes. Must be a power of two between 512 and 32768 inclusive, or the value 1
representing a page size of 65536.

18 1 File format write version. 1 for legacy; 2 for WAL.

19 1 File format read version. 1 for legacy; 2 for WAL.

Figure 1: Screenshot sourced from: https.//www.sqlite.orq/fileformat2.html#vnums

e Ifa WAL file is used by SQlite, then a digital forensics practitioner can potentially observe
three files as shown in the screenshot below.

Mama

B history.db-wal

B history.db
B history.db-shm

Figure 2: history.db with WAL and SHM files

e Ifthe legacy rollback journal file is used by SQLite, then a digital forensics practitioner,
can potentially observe two files as shown in the screenshot below. Note the absence of
the shared memory (*.db-shm) file, as this type of temporary file is only used with WAL.

M e

B msn.db
B msn.db-journal

Figure 3: main.db with journal file

e WAL file: The WAL file can be found in filesystems where the database connection has
not shutdown cleanly. This allows for potential recovery of live records that have not
been committed to the database, or recovery of previously existing records that have
been deleted and are no longer recoverable from the database itself, but all or part of
the record resides in the WAL file. The WAL file can be recognized by the presence of 4
characters, "-wal" appended to the end of the name of the main database filename [5].
Example WAL filename:‘sms.db-wal’.

e Rollback Journal file: This rollback journal file provides another method of ‘atomic
commit” and rollback method for SQLite database operations. An SQLite database journal
file can be identified by the 8 characters "-journal" appended to the end of the filename
[5]. Example ‘journal’ filename: ‘sms.db-journal’

https://www.sqlite.org/fileformat2.html#vnums
https://sqlite.org/tempfiles.html
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
https://sqlite.org/tempfiles.html

Authored by Shafik G. Punja & lan Whiffin
V2.7

3. The shared memory (‘shm’) file. This file does not contain any database content. If a
database crash occurs, the ‘shm’ file is not vital to the recovery of the database [4]. In the
authors’ experience, the shared memory file has not been observed to be of investigative
value. Example ‘shm’ filename: ‘sms.db-shm’.

Database Header Structure, which is comprised of the first 100 bytes, can be thoroughly enjoyed
by referring to this source: https://www.sglite.org/fileformat2.html#vnums

The SQLite database file header (or magic number) is 16 bytes in length, starting at decimal
offset O (zero), can easily be recognized in ASCll as “SQLite format 3”(orinhexadecimalas
53 51 4C 69 74 65 20 66 6F 72 6D 61 74 20 33 00).

The Record Number Autoincrements

The SQLite database itself consists of tables, where each table has rows of records with columns
that describe the data within the rows. The SANS SQLite Pocket Reference Guide (created Lee
Crognale, Heather Mahalik and Sarah Edwards) has a nice graphic that visually explains this [10].

Tables Columns

SITEO0TRY SEI402 97RO 4T84 Welcome 8o Kk, the super fast smartphone metsenger ! ¥
quentions, et me know. ' do my best 2

47RO 857 A97R0M11 850 You started chatbing with Ace

97808 18 S86060 07E04196. 154 Moy Boyd, 10 ghad we're finally in touch

497805068 863130 497805067 5% TbER 3867 2 4400 9 e 3 0S5 TSIICT

97000 61O 497805067 915 WHAT do you thenk of tha® pectuee !

9780611813274 497805118 1327 | just sert you one of iy currest laptop

ATA27. TN A97TRSAIT 716313 Hello mecrophone

ATTRIBALY YIS WAL s Rows

SOT8123 04 S80S 407812304 1% Yest chat from ace 10 Noyd

497813709 784746 497813653 037 | saved a ik picture Y00

4978137645129 AGTRIITGASI298 | sawed the pic of the tranh and then | deleted the puc of the

A9T00NLTTIES2 497904550 859 Schatc 304114 456 90002 lac Melit T

498070317 634271 A0B0M0317.634271 M ik

Figure 4: SANS SQLite Pocket Reference Guide (created by Lee Crognale, Heather Mahalik, and Sarah Edwards)

As stated on the ‘sqlite.org’ website: ‘All rows within SQLite tables have a 64-bit signed integer
[primary] key that uniquely identifies the row within its table’. In other words, by default, every
SQlite database has a ‘rowid’ column (or alternately may choose to use the PRIMARYKEY as a PK
column) that uniquely identifies a record within a specific row in the database itself [7]. Record
numbering starts with a value of 1, and autoincrements with every new record that is created.
The record numbers are therefore contiguous, with no gaps [8].

https://www.sqlite.org/walformat.html
https://www.sqlite.org/fileformat2.html#vnums
/Users/sasypjs/Desktop/https%20:/digital-forensics.sans.org/media/SQlite-PocketReference-final.pdf
https://www.sqlite.org/withoutrowid.html

Authored by Shafik G. Punja & lan Whiffin
V2.7

**Note: The reader should also be aware, there also exists the ability within an SQLite database to create a
row, using ‘WITHOUT ROWID’ table method, that omits the creation of a ‘rowid’ column [7]. The ‘WITHOUT
ROWID’ table method is not default behaviour for an SQLite database. **

The following screenshot is an example of the ‘sms.db’ SQLite database file (from Cellebrite CTF
of Ruth Langmore’s Apple iPhone X) opened with the ‘sms.db-wal’ present, using DB Browser for
SQLite. This a great free open source cross platform application that can open an SQLite
database file. The ‘sms.db’ SQLite database file Apple devices running iOS 14.x (or iPadOS 14.x)
and lower, records SMS, MMS and iMessage activity for the native Messages application.

The messages table shows the ROWID column which contains a total of 73 records. In the
screenshot record numbers 1 through to 20 are displayed in a contiguous manner. There are no
missing records from rows 1 to 73. We checked.

°

I New Database B Open Database =

Database Structure Browse Dat

-~

Table: | B message 5

ROWID | guid

AD48CD... Hi

4EB109D... Telegram code: 92934...
A579010... [I'm in Dallas

37FEFE... Did you make it to the mountail
BCAB51A... Yep!

ES5B8347... It was incredible. | love it there
3B7DEQO... |need to get my life back on tr:
9641B2E... 019503 is your verification cod|

L e~ @ ;A W N =

CE611FE... Reminder: Please refill your pl:
EGOE99F... I'm staying in this week
ACBE723... Free Msg: Receiver 48498712
4E33CT72... You blocked me??77?
E89DT66... Free Msg: Receiver 48498712(
BS7CCT... Seriously?

940521D... Free Msg: Receiver 48498712
BD5A9TS... Just great. Not what's | needed
C18556D... Free Msg: Receiver 48498712
BD59FAE... Reminder: Please refill your pl:
AZFB845... I'm back again

-
(=]

-
2
3
r
5
6
7
8
9
10

23|82
Alwip|la
RS

2DED71... My phone wasn't working right

4 1-210f73 ¥ M

Figure 5: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1, showing contiguous record numbers in
the ROWID column.

https://www.sqlite.org/withoutrowid.html
https://sqlitebrowser.org/
https://sqlitebrowser.org/
https://sqlitebrowser.org/

Authored by Shafik G. Punja & lan Whiffin
V2.7

If the ‘sms.db’ SQLite database file (from Cellebrite CTF of Ruth Langmore’s Apple iPhone X) is
opened with and without its associated WAL file, ‘sms.db-wal’, there is a difference in the
number of contiguous records present in the messages table. Two copies of the ‘sms.db’ SQLite
database were created in separate storage locations. The first copy did not have the associated
WAL file, ‘sms.db-wal’ but the second copy did. Both ‘sms.db’ SQLite database files were opened
in their own instances of DB Browser for SQLite as shown in the screenshots below.

The ‘sms.db’ SQLite database file without its associated WAL file, ‘sms.db-wal’, presents with 65
contiguous records in the messages table with ROWID column values from 1 through to 65.

B New Database B Open Database]

3

Database Structure Browse Data Edit P

Table: [message

OWID +| guid

AD48...

4EB... Telegram code: 92934...

AS579... I'min Dallas

37FE... Did you make it to the mountains?
6CA... Yep!

ESB... It was incredible. | love it there @ New Database ® Open Database

Lo

| need to get my life back on track and move
Database Structure Browse Data

. 019503 is your verification code for Hoop ...

1
2
3
4
5
6
T
8
9

. Reminder: Please refill your plan within the ..| Taple| B sglite_sequence & = *
I'm staying in this week
Free Msg: Receiver 4849871204 unable to . |
. You blocked me?777
Free Msg: Receiver 4849871204 unable to ..
. Seriously?
. Free Msg: Receiver 4849871204 unable to ..
Just great. Not what's | needed right ngy
. Free Msg: Receiver 48498712044 able to ..

name seq

1 chat

E handle

3 message
: attachment

. Reminder: Please refill ygu plan within the .|
I'm back again

My phone wsSn't working right

4 1-210f66 b | M

Figure 6: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1, no WAL.

https://sqlitebrowser.org/
https://sqlitebrowser.org/

Authored by Shafik G. Punja & lan Whiffin
V2.7

The ‘sms.db’ SQLite database file with its associated WAL file, ‘sms.db-wal’, presents with 73
contiguous records in the messages table with ROWID values from 1 through to 73. Compared to
the previous, that is a difference of 8 live records that were not committed (or merged) to the
‘sms.db’ SQLlite data, until it was opened with the associated WAL file, ‘sms.db-wal’ present.

B New Database @ Open Database

Database Structure | Browse Dat
Table: |[@ message

ROWID| guid

—_

A048CD... Hi

4EB109D... Telegram code: 92934...

A579010... I'min Dallas

37FEFE... Did you make it to the mountai

i B New Database @ Open Database

E5B8347... It was incredible. | love it there >
3B7DE0O... | need to get my life back on tr: Bl | TBvo—
964182E... 019503 is your verification cod
CE611FE... Reminder: Please refill your pl:
EGOES9F... I'm staying in this week name ‘ seq
ACBE723... Free Msg: Receiver 48498712

4E33C72... You blocked me??7? i ot

EB9D766... Free Msg: Receiver 48498712 2 handle

857CCT7... Seriously? 3 _message

940521D... Free Msg: Receiver 484987127 ' attachment

BD5A978... Just great. Not what's | negtied

C18556D... Free Msg: Receiver 44498712

8DS59FAE... Reminder: Pleag# refill your pig

A2FB845... I'm back agsfin

~

Table! [H sglite_sequence ¢ | O) 4

2
3
4
5
6
7
8
9

2DED71... My phgfie wasn't working right

€ 1-210f73 » M

Figure 7: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1, with WAL.

So, in this example, how important is the ‘sms.db-shm’ file? When the ‘sms.db’ SQLite database
file is opened with its associated WAL and shm files present, the same number of records is
observed as with WAL file only.

https://sqlitebrowser.org/

Authored by Shafik G. Punja & lan Whiffin
V2.7

It is important to note also that the inverse can be true. The main SQLite database may contain
data that gets removed once the WAL has been incorporated. The reason behind this is because
there could be records that are assigned to be deleted from the main SQLite database, for which
the write (delete record) operation has not been committed. The WAL contains all the pending
write operations and as the delete operation is also a write, you will find them together with

other writes in the WAL. So, in this case opening the main SQLite database with the WAL file will
cause the records to be removed.

To demonstrate this, we opened up a cache database from an iPhone both with and without
processing the WAL file using using ArtEx (developed by lan Whiffin). When the WAL was
processed, you can see that the ZRTCLLOCATION table contains 1303 records and that the first
record is PK 15906 and the last PK is 17209, in the screenshot below.

With WAL Without WAL

ZRTCLLOCATION ~ Z_PK Z_ENT Z_OPT ZALTITUDE

a— 1508 - 15806 |1 1 1086.65270996094
|D ZRTDEVICEMO

Empty Table 15807 |1 1 1086.80444335938
|E ZRTEVENTLOCA

Empty Table

|E ZRTEVENTMOD
' Empty Table

9 ZRTFINGERPRIN
B 1090.14050292969

= ZRTGEOROUTE 1080.21423339844

Figure 8: Screenshot of ArtEx with WAL parsing.

Compared to without WAL parsing as shown below. When the WAL is not processed, you can
see there are 1345 records, with a first and last PK or 15777 and 17121 respectively.

With WAL Without WAL

ZRTCLLOCATION ~ Z_FK Z_ENT Z_OPT ZALTITUDE

— 135 . 15777 |1 1 1087.03332519531
ID ZRTDEVICEMO

Empty Table 15778 (1 1 1087.11303710938
lﬁ ZRTEVENTLOCA
LI Empty Table

Iﬁ ZRTEVENTMOD
' Empty Table

IE ZRTFINGERPRIN
E==l 81 records 1250.51087029392

= ZRTGEOROUTE 1250.27933228942

Figure 9: Screenshot of ArtEx without WAL parsing.

http://doubleblak.com/index.php

Authored by Shafik G. Punja & lan Whiffin
V2.7

This makes perfect sense. When the WAL commit occurs, records 15777 through to 15905 are
deleted (a loss of 129 records) but records 17122 to 17209 are created (a gain of 88 records).
This leaves us with a net loss of 41 records. But the net difference really isn’t the point (After all,
a single record could make all the difference when it comes to evidence). The point is that many
tools automatically process the WAL (if present) and will therefore risk the loss of data by record
deletion. But you cannot afford to ignore the WAL as it may contain new records that you may
need.

Once the connection to the ‘sms.db’ SQLite database is closed, both the ‘sms.db-wal’ file and
‘sms.db-shm’ files, were observed to be removed from the locations they were copied to, as the
changes have been committed or merged within the ‘sms.db’ file.

The good news for digital forensics practitioners, is that most (if surely not all) digital forensics
products, incorporate the associated WAL (or the rollback journal) file, as part of the analysis
process, in order to identify as many unmerged live, unique records as possible. The authors’ in
this context, are not taking into account the recovery of deleted records from the freelist space
specific to the SQLite database or from within the WAL (or the rollback journal) file itself. What
we are unable to say is exactly which digital forensics products clearly identify, unmerged live
records from the WAL

If the digital forensics practitioner elects to export a SQLite database file, out of their chosen
digital forensics analysis platform, for review in any free open source tool, as demonstrated
above, it is important to understand the associated WAL (or the rollback journal) and to know if
you want to include it or not. As a caution to the reader, any free open source tools also have
the ability to cause write changes to the SQLlite database, as opposed to those SQLite database
analysis tools that are part of a digital forensics tool suite.

Deleted SQLite Records

As smartphone operating systems evolve, the ability to recover deleted records from SQLite
databases becomes increasingly more difficult. Generally speaking, until the SQLite database is
fully vacuumed and defragmented, deleted (not live) records can be recovered. Once the
vacuum and defragmenting operation occurs (transparent to the device user), deleted (not live)
records are permanently removed, at which point there is no hope in any record recovery [11].

Take for example pre Apple iOS 12, where recovery of deleted records related to text messages
and iMessages is more likely, as the deleted records were not immediately wiped. As of iOS 12
and newer the deleted text messages and iMessages are wiped almost immediately after
deletion, and cannot be recovered from the SQLite database [11].

When a record is deleted, regardless of whether it can be recovered or not, the contiguous
numbering sequence is broken, and gaps start to appear in the ROWID numbers. This leads to
the actual point of the article, which is the analysis of the missing records from a specific table
within an SQLite database file.

https://blog.elcomsoft.com/2020/07/the-iphone-data-recovery-myth-what-you-can-and-cannot-recover/
https://blog.elcomsoft.com/2020/07/the-iphone-data-recovery-myth-what-you-can-and-cannot-recover/

Authored by Shafik G. Punja & lan Whiffin
V2.7

Missing SQLite Records

The identification of non-contiguous numbering sequences in the record numbers, within an
SQLite database can be useful for identifying a missing record. For example, a missing record in
the SMS database may signify a deleted message or a missing record from the call history table
may signify a missing call record.

B New Database B Open Database

L]

Database Structure Browse Data Edit Pragmas
Table: B ZCALLRECORD ¢/ = ¥ 4

Z_PK Z_ENT| Z_OPT‘ ZANSWERED ‘ ZCALL_CATEGORY

2

MI3
Egg% numb‘gr 2

g Rl I el Rl el Rl B

=]
R R R R R R R MR R M ORM N M

4 1-130f14 » M

Figure 10: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing a missing call record in the
CallHistory.storedata database (from Cellebrite CTF of Ruth Langmore’s Apple iPhone X).

For tables with timestamps, it may be useful to work out the time period that the deleted record
was made. As the records are created consecutively, it stands the reason that the records are
created in time order. Therefore, the missing record was made after the previous record but
before the next. This may not always be the case and should be applied on a table-by-table basis.

Also note that this refers to the time that the record was made in the database, not necessarily
the time the record was deleted or even the time that something occurred. SMS for example
may be delayed in transit, and so the time received may be much later than the time it was sent.

https://sqlitebrowser.org/

Authored by Shafik G. Punja & lan Whiffin
V2.7

This has been addressed in a blog post authored by lan Whiffin titled, “Primary Key / Date Stamp
fallacy” (http://doubleblak.com/blog/primarykeyfallacy).

You may also want to take this further and explore other associated tables to see if there is any
correlation you can make with the time period of the missing record(s). For example, are there
any notifications, application use, sounds etc. made that could give you additional clues about
the missing record.

You are unlikely to get as much information from a missing record as you would like; but that
doesn’t mean you can’t get anything. This technique is easy when you have an obviously missing
record, but sometimes the missing record isn’t quite so obvious.

In the screenshot shown below, in the CallHistory.storedata database, ZCALLRECORD table,
(from Cellebrite CTF of Ruth Langmore’s Apple iPhone X) the missing record is actually AFTER the
last record being displayed. It isn’t immediately apparent as there is no record after it.

B New Database ® Open Database B Writd

v

Database Structure Browse Data Edit Pragmas Execute

Table| (M ZCALLRECORD ¢ | & ¥ % o & DB Brows

@ New Database ® Open Database Bw

~

Z_PK |Z_ENT|Z_OPT| ZANSWERED | ZCALL_C

Database Structure Browse Data Edit Pragmas Execut

Table| | @ Z_PRIMARYKEY $| o b 4

Z_ENT| Z NAME | Z_SUPER‘ Z MAX |

1 CallDBProperties 0] 1
2 CallRecord 0 15
3 Handle 0 15

0 oo N o g & N =

The)mostirecentlyused)
recordnumber;is)i5)

RN RN NN NN RN RN NN NODNDDN

2
1
1
1
1
1
1
1
1
2
1
1
1

o -2 O O O O o o o o o s o

s

R -l el Il Rl Bl el Rl
(=]

(Most{recentexisting|recordithat|is)
observedJis)14)

4 1-120f13| % M

Figure 11: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing a missing record after the last
used record in the CallHistory.storedata database (from Cellebrite CTF of Ruth Langmore’s Apple iPhone X).

10

http://doubleblak.com/blog/primarykeyfallacy
http://doubleblak.com/blog/primarykeyfallacy
http://doubleblak.com/blog/primarykeyfallacy
https://sqlitebrowser.org/

Authored by Shafik G. Punja & lan Whiffin
V2.7

What we have to do in this case is try to find the last generated record value in use within the
table of interest. In this case, the Z_PRIMARYKEY table helps identify the last generated record
value in use as record 15, and the last observed record in the Z_PK column, in the ZCALLRECORD
table is 14. The reader should note that the authors intentionally deleted the last record,
number 15 (row 14) to demonstrate the last record number used value can be one higher than
the observed record number in its respective table.

In most cases, you may find a table called “sqlite_sequence” as an internal table within the
database. The sqglite_sequence table is an internal table maintained by the SQLlite database. It is
automatically created by the SQLite database when there are fields in tables that have the
AUTOINCREMENT keyword set [12].

Now let’s try and locate the “sqglite_sequence” table. One approach is to query a list of all the
tables present within an SQLite database. The following custom query will list all tables present
in the SQLite database:

SELECT name FROM sglite master WHERE TYPE = 'table'

Using the ‘sms.db’ SQLite database file (from Cellebrite CTF of Ruth Langmore’s Apple iPhone X)

with its associated WAL file, a list of tables is returned, where the name of each table is being
returned, and presented in non-alphabetical order.

11

https://sqlite.org/autoinc.html

Authored by Shafik G. Punja & lan Whiffin
V2.7

R New Database @ Open Database

~

Database Structure Browse Data Edit Pragmas Execute SQL

- B B & ¥ x B @ w H
x @R S..

SELECT name FROM sglite master where type = 'table'

name
deleted_messages

sqlite_sequence
chat_handle_join
sync_deleted_messages
message_processing_task
handle
sync_deleted_chats
message_attachment_join
sync_deleted_attachments
kvtable
chat_message_join
message
chat
attachment
sqlite_stat1
Execution finished without errors.
Result: 16 rows returned in 17ms

At line 1:
SELECT name FROM sqglite_master where type = 'table'

Figure 12: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing search for all tables query.

With a slight variation to the previously shown query, the list of tables can be alphabetically
ordered by name where the ‘ORDER BY name’ has been added.

SELECT * FROM sglite master WHERE TYPE = 'table' ORDER BY name

https://sqlitebrowser.org/

Authored by Shafik G. Punja & lan Whiffin
V2.7

If you skip the first aforementioned approach, you can presume the internal sglite_sequence
table exists, and try to directly call the sglite_sequence table using the next query. This will
return a list of all the tables with their respective sequence (seq) values that are currently in use.

SELECT * from sglite sequence

Using the ‘sms.db’ SQLite database file (from Cellebrite CTF of Ruth Langmore’s Apple iPhone X)
with its associated WAL file, the screenshot below shows SQL query being used in DB Browser for
SQLite v 3.12.1 on macOS 11.0.1. With successful execution of the query, you should now see all
the tables in your database. Looking through the tables, it should be obvious which table you are
interested in.

B New Database @ Open Database

v

Database Structure Browse Data Edit Pragmas Execute S

B & %

v v

x @ Ss..
. sqlite sequence m tO |iSt‘,tab|eSj|
\With seqycolumn;

values

, willlbejthe
2 ROWjID)valuelcurrently,
3 message m within ‘!_Ilg
4 attachment respectivejtable

Nt

Execution finished without errors.
Result: 4 rows returned in 5ms

At line 1:

SELECT * from sqlite sequence

Figure 13: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing “sqglite_sequence” query.

The “name” column shows you the names of tables that have automatically incrementing fields.
The “seq” column shows you the latest id of that field. In the “messages” table, this means that
the latest in-use sequence record number is 73. Thus, if you were to add a new row into the
messages table, it would be assigned record number 74 and the “seq” field would be updated in
the sqlite_sequence table to reflect the new record number.

13

https://sqlitebrowser.org/

Authored by Shafik G. Punja & lan Whiffin
V2.7

You may ask what if there is no “sqlite_sequence” table. The “sglite_sequence” table exists to
handle the task of counting records. By using the AUTOINCREMENT field, the developer can
offload the counting process to the SQLite database. The database will increment the record id
sequentially. If a field with AUTOINCREMENT exists, then SQLite will not allow you to drop the
“sqglite_sequence” table. If you do not find an “sglite_sequence” table, then chances are the app
isn’t using an AUTOINCREMENT field. In this case, it is incumbent upon the developer to handle
the record counting.

The ‘CallHistory.storedata’ SQLite database, (from Cellebrite CTF of Ruth Langmore’s Apple
iPhone X) is a great example of where there is no “sqglite_sequence” table, that is used to identify
the current record in use within the tables present in the database. Instead, what is being used is
the Z_PRIMARYKEY table that performs this function. The next screenshot shows the custom
query search for the tables in the database. There are a total of 7 tables present, none of which
are the “sglite_sequence” table.

- -

B New Database B Open Database B

LV

Database Structure Browse Data Edit Pragmas Execute SQL

b M

% @R S..

name
1 ZCALLDBPROPERTIES

E-ZCﬂLLRECORD

3 Z_2REMOTEPARTICIPANTHANDLES
4 ZHANDLE

5 Z_PRIMARYKEY

E Z_METADATA

? Z_MODELCACHE

Execution finished without errors.

Result: 7 rows returned in 6ms

At line 1:

SELECT name FROM sqlite master WHERE TYPE = 'table'

Figure 14: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing the Z_PRIMARYKEY table listed,
from Cellebrite CTF of Ruth Langmore’s Apple iPhone X.

14

https://sqlitebrowser.org/

Authored by Shafik G. Punja & lan Whiffin
V2.7

There is however the Z_PRIMARYKEY table, as shown in the screenshot below, which provides

essentially the same information as the “sqlite_sequence” table. The Z_MAX column in this case

is used to identify the current record number in use within each of the tables in the

‘CallHistory.storedata’ SQLite database.

B New Database B Open Database

£

Database Structure Browse Data Edit §

Table: EEZPRIMARYKEY ¢ = ¥ %

ZE NTi Z_NAME

|z_suPER| Z_MAX|
1| CallDBProperties 0 1

1
2 2 CallRecord 15
3 3\ Handle 15

Table) ames;

Figure 15: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing the structure of the
Z _PRIMARYKEY table, from Cellebrite CTF of Ruth Langmore’s Apple iPhone X

The ‘CallRecord’ table, under the Z_ NAME column, from the previous screenshot, shows a

The)current}
record/numbery
injuse)within)
thejrespective)

table)

Z_MAX value of 15. In comparison to the next screenshot of the ZCALLRECORD table, we can see

that there are indeed 15 records that have been created thus far in this table, but only 14 rows

of records are displayed.

. New Database

Table:| [ZCALLRECORD & || &

B Open Database

Database Structure Browse Data

h 4

Edit Pragmas E

% BE &

~

Z PK |Z_ENT | Z_OPT | ZANSWERED ‘ ZCALL_CATEGORY

2

’
a
3
4
5
6
7
8
9
10
"

N NN N NRNMRBEKERNNNDNRNNDNNINRN

e S X R S S Sy

4 1-130f14 » M

Figure 16: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing the structure of the
ZCALLRECORD table, from Cellebrite CTF of Ruth Langmore’s Apple iPhone X.

ZAPK{record/#3]
has]beenldeleted]

o O - 0 0 0 0 0o o ©

S mk =k =k A = ek ek el =k =k =k =k

15

https://sqlitebrowser.org/
https://sqlitebrowser.org/

Authored by Shafik G. Punja & lan Whiffin
V2.7

Don’t focus on the row count but rather on the Z_PK column value, which is the record number
(and is an alias for the ROWID column), which in this case identifies each unique record. There
are 14 rows of records because the Z_PK column of the ZCALLRECORD table, has a gap between
record 2 and record 4. Record 3 has been deleted! The use of the ‘Z_’ prefix column and table
names appears to be unique to the Apple ecosystem itself. So, you may not see Z_’ prefix column
and table names in non-Apple SQLite databases.

Quick tip about the PRIMARY KEY table, cited directly from https://www.sqglitetutorial.net/sqlite-
primary-key/: “If a table has the primary key that consists of one column, and that column is
defined as INTEGER then this primary key column becomes an alias for the rowid column.”

We have now learned how to identify a list of tables, and the current ‘seq’ (sequence) record
value or PRIMARY KEY (PK) record number, that is in use, for tables within an SQLite database.
Remember that a key principle in the operation of SQLite databases is the record value
increments by one for every record added to the table, starting at record 1. Once a record
number is deleted that record number value is never reused within an SQLite database. So, a
table with a record value of 100 would be expected to have 100 records. This means that if there
are only 99 records, and 1 through 99 are contiguous, then it must be record 100 that is missing.

This came in useful for lan on a case where the user had deleted the incriminating photograph,
which just so happened to be the last photograph taken. Using the ‘seq’ (sequence) record
value, lan was able to identify that there was a missing photograph, and due to the incremental
way that iOS names photographs, he could work the name of the missing photograph itself. This
led to finding the image as an email attachment that he was able to recover.

Missing Record Analysis
In this section we are going to be actually analyzing the missing records that exist within the
‘CallHistory.storedata’ SQLite database file from Josh Hickman’s iOS 13.4.1 Public Image. This is

a full file system extraction of an iPhone device, and therefore does contain the associated WAL
file.

A quick check of the Z_PRIMARYKEY table, shows the ‘CallRecord’ table is currently using record
65, as identified in the Z_MAX column. We should, therefore, expect to see a record with a value
of 65 inthe Z PK column of the ZCALLRECORD table, which we don’t. Instead, we see a value of
64.

16

https://www.sqlitetutorial.net/sqlite-primary-key/
https://www.sqlitetutorial.net/sqlite-primary-key/
https://thebinaryhick.blog/?s=13.4.1

Authored by Shafik G. Punja & lan Whiffin
V2.7

B New Database B Open Database =

~

Database Structure Browse Data Edit Pragmas Exec

Table: | [ZCALLRECORD ¢ T — B

Z_PK~" |Z_ENT|Z_OPT|ZANSWERED| ZCALL
Filter Filter Filter Filter Filter
40

41
42
43
44
45
i 46
Database Structure Browse Data Edit Pragm| 47

B New Database B Open Database

48

49

ZENT| ZNAME |Z_SUPER|Z_MAX|)
Filter Filter Filter Filter 51
1 CallDBProperties 55

Table: | [Z_PRIMARYKEY ¢ * S

= =S NN NN NN NN N RNDNDRN
- O O O O O ©O O © o oo ©o o o

2 CallRecord 56

3 Handle 58

-

59
60
61
62

N R RN NN N RN NN NN NNNDRNDERNRDRDDNDNDNRNODDWN

N NN NN =
o © ©O O O O O

4 17-360f37 % M

Figure 17: Screenshot from DB Browser for SQLite v 3.12.1 on macOS 11.0.1 showing the last record number 64 with
record value 65 missing from the ZCALLRECORD table, from Josh Hickman’s iOS 13.4.1 Public Image.

You should also have observed, from the above screenshot the evident disparity between the
row number 37 and record number 64. This is a clear indication of the missing records within the
ZCALLRECORD table of the ‘CallHistory.storedata’ SQLite database file.

Missing Record Finder

It is possible to automate the analysis of missing records from an SQLite database. The next
several screenshots show an example of a Windows based tool called Missing Record Finder
developed by lan Whiffin. He developed it when we worked together at our former law
enforcement agency’s digital forensics lab. At this time, Missing Record Finder is not publicly
available.

17

https://sqlitebrowser.org/

Authored by Shafik G. Punja & lan Whiffin
V2.7

Missing Record Finder v 1.7 simply checks for consecutive numbers in the relevant supported
SQlite database tables. It does not attempt data recovery or comparisons. It also does not take
the into account any unmerged live records from the WAL (or journal) file.

In this screenshot below, the left aspect of shows the Missing Record Finder 1.7, that has
identified (without the WAL file) 35 existing records in the ZCALLRECORD table of the
‘CallHistory.storedata’ SQLite database file. The right aspect of the screenshot shows the same
database opened with WAL file present, displaying the ZCALLRECORD table, in DB Browser for
SQLlite, presenting 37 existing records.

i Missing Record Identifier 1.7

DataBase

E\JH_CallHistory DB - Copy\CallHistory storedata ‘ Find DB Use Local Time

RUN

Between (2020/03/23 14:0252 [~ | And [2020/04/140956:12 [~ | Database Type |05 Call History ~| b4 Show SQL

NOTE: This tool simply checks for consecutive numbers in the relevant db tables. @ New Database @ Open Database

It does not attempt data TECOVErY OF COmpansons. batabase Structure Browse Data Edit Pragm:

Start Date: 2020-03-23 2:02 PM
End Date: 2020-04-14 9:56 AM

able: | [ZCALLRECORD ¢ 2 %

WithoutjWAL 35 existin @recordSJ Z_PK|Z_ENT|Z_OPT| ZANSWERE

Starting I1D: 12 End ID: 62

12
16
26
27
28

v‘ For

TimeStamp 3rd Party Direction
2020/03/23 14:02:52 (UTC-6) com.apple. Telephony) Incoming 29

30

=

2020/03/24 11:37:18 (UTC-6) com.apple.Telephony) Incoming 32
33

34

35

36

37

38

39
2020/03/26 11:51.45 (UTC-6) com.apple. Telephony) Incoming 40
2020/03/27 10:25:36 (UTC-6) com.apple. Telephony) Incoming
202003427 13-55:03 (LITC-K) cnm annle Telenhonv) Incomina

N RN RN DR

41
42
43

With)WAL 37fexisting|records) W

4 1-200f37| b

RN R R RN RN RN NN RDRNMRNRNRNRNNRNDLDNDNNNDBNDIN

R R R R R R RN RN R D=

N

Figure 18: Missing Record Finder 1.7 showing presence of missing records within the ZCALLRECORD table of the
‘CallHistory.storedata’ SQLite database file.

Authored by Shafik G. Punja & lan Whiffin
V2.7

The visual representation of missing records in Missing Record Finder 1.7 is an invaluable aid in
understanding how many records are missing, in between specific time periods relative to
existing records. What Missing Record Finder 1.7 does not do is identify missing records prior to
the oldest existing record, or the very last missing record after the most recent existing record.

Another nice feature in the Missing Record Finder 1.7 output is displaying the SQLite custom
queries that were used and a summary of missing records between date ranges. The date ranges
are determined from existing records.

E Missing Record Identifier 1.7

DataBase |E:\JH_CalHistoryDB - Copy\CallHistory storedata || FndDB | & Use LocalTime

Between [2020/03/23 140252 [~ | And [2020/04/14 095612 [~ | Database Type |io5 Cal History « | 4 Show saL

Get the highest 1D value from the dataset within the requested time period.

SELECT * FROM ZCALLRECORD WHERE ZDATE >= 608547372 AND Z_PK > 0 ORDER BY Z_PK LIMIT 1

Get records between the lowest and highest record 1D values.

ZCALLRECORD WHERE Z_PK >= 12 AND Z_PK <= 62

SELECT Z_PK, ZDURATION, ZSERVICE_PROVIDER, ZNAME, ZORIGINATED, CAST (ZDATE AS INTEGER1

e Missing records are:
3 Records are missing between 2020/03/23 14:02:52 (UTC-6) and 2020/03/24 11:37:18 (UTC-6)
9 Records are missing between 2020/03/24 11:37:18 (UTC-6) and 2020/03/26 11:51:45 (UTC-6)
3 Records are missing between 2020/04/10 08:40:42 (UTC-6) and 2020/04/11 19:13:23 (UTC-6)
1 Record is missing between 2020/04/11 19:14:46 (UTC-6) and 2020/04/12 08:04:06 (UTC-6)|

Figure 19: Missing Record Finder 1.7 showing a summary of missing records and the custom SQL query used to identify missing
records in the ZCALLRECORD table of the ‘CallHistory.storedata’ SQLite database file.

19

Authored by Shafik G. Punja & lan Whiffin
V2.7

ArtEx

Next, using ArtEx 1.5.1.0, a free open source iOS analysis tool (developed by lan Whiffin), the
‘CallHistory.storedata’ SQLite database file was analyzed for missing records, from Josh
Hickman’s iOS 13.4.1 full file system (FFS) extraction. ArtEx is a Windows only tool, and was used,
in this example, on Windows 10 20H2 (OS Build 19042.30) through VMFusion 12.1.0, running on
macOS 11.0.1. It only accepts data from iOS full file system (FFS) extractions. It is not possible, to
analyze a single SQLite database with ArtEx.

The following screenshot, in ArtEx, shows the existing call records parsed with identification of
missing records, interjected in between existing records, based on the respective missing record
number. In this view ArtEx currently does not show the missing records previous to the oldest
existing record or after the most recent existing record. The record found count includes the
existing and missing (not including the missing records previous to the oldest existing record or
after the most recent existing record).

Click;en any,;rew,under,the)
-y
41 Records Found Source Columnjteopen]

Row ID lcon Start Time 4 End Time Activity Source

20200323 16:0252 2020-03-23 16:02.52 Call {00:00:00) Missed Audio Call from Unknown (+14082560700) allHistory storedata (ZCALLRECORD Row 12)
(UTC-05:00) (UTC-05:00)

2020-03-23 16:02:52 2020-03-24 13:37:17 3 Deleted Call Records |Cdrhoq‘mredia (ZCALLRECORD Row 13- 15)

(UTC-05:00) (UTC-05:00)

2020-03-24 13:37:18 2020-03-24 13:37:18 Call {00:00:00) Missed Audio Call from Unknown (+14082560700) CallHistory storedata (ZCALLRECORD Row 16)
(UTC-05:00) (UTC-05:00)

2020032413378 20200326 13:51:44 9 Deleted Call Records Callistory storedata (ZCALLRECORD Row 17- 25)
(UTC-05:00) (UTC-05:00)

2020-03-26 13:51:45 |2020-03-26 13:51:45 [Call (00:00:00) | Missed Audio Call from Unknown (+14082560700) | CallHistory storedata (ZCALLRECORD Row 26)
(UTC-05:00) (UTC-05:00)

2020-03-27 12:25:36 2020:03-27 12:25:36 Call (00:00:00) Missed Audio Call from Unknown (+14082560700) |C5|H|lwy storedata (ZCALLRECORD Row 27)

(UTC-05:00) (UTC-05.00)

20200327 1555.03 2020-03-27 15:55:03 Call (00:00:00) Missed Audio Call from Unknown (+14082560700) CallHistory storedata (ZCALLRECORD Row 28)
(UTC-05:00) (UTC-05:00)

20200401 16:06:38 20200401 16:06:38 Call (00:00:00) Missed Audio Call from Unknown (+14082560700) CallHistory storedata (ZCALLRECORD Row 29)
(UTC-05:00) | (UTC-05:00) | |

20200403 12:10:54 20200403 12:10:54 Call (00:00:00) Missed Audio Call from Unknown (+14082560700) CallHistory storedata (ZCALLRECORD Row 30)
(UTC-05:00) (UTC-05:00)

20200405 16:42.18 2020-04-05 16:42:41 Call (00:00:23) Outgoing Audio Callto Unknown (3197627808) CallHistory storedata (ZCALLRECORD Row 31)
(UTC-05:00) (UTC-05:00)

20200406 163433 20200406 16:3433 Call (00:00:00) Missed Audio Call from Unknown (+14082560700) CallHistory storedata (ZCALLRECORD Row 32)
(UTC-05:00) (UTC-05:00)

2020-04-06 17:46:08 2020-04-06 17:48:08 Call (00:00:00) Missed Audio Call from Unknown (+14082560700) CallHistory storedata (ZCALLRECORD Row 33)
(UTC-05:00) (UTC05:00) |

2020-04-06 18:43:00 2020-04-06 18:43:00 Call (00:00:00) Missed Audio Call from Unknown (+14082560700) CallHistory storedata (ZCALLRECORD Row 34)
(UTC-05:00) | (UTC-05.00) | |

2020-04-07 14:10:42 20200407 141042 Call (00:00:00) Missed Audio Call from Unknown (+14082560700) |c=|Hi¢wumdata (ZCALLRECORD Row 35)
it AR e

ATt Ne

fFRAeeCRRARAGA_R GG

]
]
ot
=t
=]
]
=]
=] (
o1
=m
1
o1
ot
=l

Figure 20: ArtEx 1.5.1.0 showing parsed existing and missing call records from ‘CallHistory.storedata’ SQLite database.

20

http://doubleblak.com/index.php

Authored by Shafik G. Punja & lan Whiffin
V2.7

Within ArtEx, the SQLite viewer can be invoked either in two ways. First, through the Source
column interface as shown in the screenshot above. If you prefer to analyze the SQLite database
and its associated WAL file, then use the ‘Directory View’ method, as shown in the screenshot
below.

@ 0 SRS E D

Guide Device Info Zoom Out Zoom In -1 Day -1 Hour +1 Hour +1Day Chat View

105 Archive 41 Records Found

B+ Row ID lcon Start Time i Metadata
Call (00:00:00) Miss \dio Call from Unknown (+14
B9 2020-04-16 3PM @~
) :02: 20;
TimeSpan : 38 Day(s) and 1 Hourls) :00) (UTC-05:00)

(UTC-05:00) Eastem Time (US & Car | = | R | 2020-0324 13:37.18 20200324 13:37:18 Call (00:00:00) | Missed Audio Call from Unknown (= 14082560700)
@’ | (UTC-05:00) (UTC-05:00)

3:3717 3 Deleted Call Records

Sdedt Al |[DesdectA | =N 20200}24133713 20200326 135144 9 Deleted Call Records
UTC05:00 (UTC-05:00)

~

Figure 21: ArtEx 1.5.1.0 showing how to access Directory View.

Once ‘Directory View’ is opened, enter the database name and then click on ‘Search Results’
button. From the search results windows, click on the name of the SQLite database under the
‘FileName’ column to open the SQLite Viewer.

(14Enter;name;of) Z.LCIlch‘onlLtSearch)
M Viewer gatabase in search field] nesuts)
Directory Tree -
= (1) Search Result Find By Date
<
I Volumes (1) r—
3:Resuits of)
search termin) FileName Extension FilePath

file listing,view) .

4.Click on row,that
contains, the name; %t‘_). CallHistory storedats storedata-shm
SQLite database under]
theAE|IeName Column te
?B‘?.'LSQL'te \Viwer,

CallHistory storedats storedata Nolumes/JOSH/NoTal

Nolumes/JOSH/NoTa

. CallHistory storedatz storedatawal | Aolumes/JOSH/NoTa

Figure 22: ArtEx 1.5.1.0 in Directory Tree view searching for CallHistory.storedata database.

21

Authored by Shafik G. Punja & lan Whiffin

V2.7

The next screenshot shows the CallHistory.storedata SQLite database opened in SQLlite Viewer

(within ArtEx). There are 3 tabs from left to right. With WAL, Without WAL and WAL comparison.

The missing records are not yet identified as that function must be initiated by the examiner.
Make sure to first, select the database table you want to examine for missing records. Second,

click on ‘Find Missing Records’.

= ()

D Vot et -]
Queri
- - Find Missing Records

3,tabs

Tables

{

x|

With WAL Without WAL Wa Comparisan

Show Fields -

Find Missing Records)

ZCALLDBPROPERTI
1 records
ZCALLRECORD

37 reconds

ZHANDLE

37 records
Z_2REMOTEPARTI
37 records

Z_METADATA
1 records

Z_MODELCACHE
1 records

Z_PRIMARYKEY
Jrecords

ZANSWERED ZCALL_CATEGOR ZCALLTYPE

RN NN NN NN NN
RN N = NN NN NN

o Qo ol el oo o o

D QDD DD

Figure 23: ArtEx 1.5.1.0 showing ‘CallHistory.storedata’ SQLite database open in SQLite Viewer, with 3 tabs: With WAL,

Without WAL and WAL comparison.

22

Authored by Shafik G. Punja & lan Whiffin
V2.7

After running the ‘Find Missing Records’ button, if missing records are identified, that are prior
to the oldest existing record, in this case record 12, a message window will appear that identifies
how many records were found to be missing but are not shown. The reason behind this is that if
there are thousands of missing records prior to the oldest existing record, the digital forensics
practitioner is made aware of it, as ArtEx only visually identifies missing records from the oldest
existing record going forward to the most recent existing record.

With WAL Without WAL WAL Comparison

Get Layout ~ Find Missing Records CallHistory.storedat
My Queries X

Execute SQL

Mote that records earlier than 12 were found to be missing but are not
shown on the table Pin to My Querie

Tables
[a

‘@ %%:EBPROPERTI Z_PK Z_ENT Z_0PT ZANSWERED ZCALL_CATEGOR ZCALLTYPE ZDISCONNECTED ZFACH

ZCALLRECORD
37 records

== ZHANDLE
‘% 37 records

e Z_2REMOTEPARTI
‘% 37 records

e Z_METADATA
B -

1 records

‘% Z_MODELCACHE

1 records

‘@| Z_PRIMARYKEY

3 records

Figure 24: ArtEx 1.5.1.0, Find Missing Records function has been run on ZCALLRECORD’ table (““CallHistory.storedata’ SQLite
database), WAL tab.

After the message windows (from the previous screenshot) has been acknowledged, the visual
representation of missing records, highlighted as red coloured rows, can be observed.

23

Authored by Shafik G. Punja & lan Whiffin
V2.7

The ‘With WAL’ tab shows the merged (added and removed) records between the WAL file and
the database together, against all the tables within the database. This next screenshot shows 37
existing records, and 28 missing records found in the ZCALLRECORD table (‘CallHistory.storedata’
SQlite database). Missing record 65 is observed after the most recent existing record 64. (You
can refer back to the screenshot in Figure 15 which shows this too, in DB Viewer for SQLite).

——
Without WAL WAL Comparison
Get Layout ~ Find Missing Records CallHistory.storedata :
My Queries Custom SQL
Execute SQL
Pinto My Queries
Tables

| x|

|§ ZCALLDBPROPE ~ Show Fields ~

=4 1 records

% ZCALLRECORD Z_PK Z_ENT Z_0OPT ZANSWERED ZCALL_CATEGOR ZCALLTYPE

37 records !
ZHANDLE 61 2 2 0 1 1

|§| 37 records

_ 62 2 2 0 1 1

|%| Z_2REMOTEPAR 1

E==E 37 records 63 2 2 0 1 1

| Z_METADATA 64 2 2 0 1 1

|§| 1 records

= 2 MODELCACHE «
|%| 1 records v
[Z-PRMARYKEY S 2

! 37 Records 28 Missing Records Found

Figure 25: ArtEx 1.5.1.0, most recent record is identified as a missing record in the ZCALLRECORD table
(‘CallHistory.storedata’ SQLite database), WAL tab.

24

Authored by Shafik G. Punja & lan Whiffin
V2.7

The ‘Without WAL’ tab is the SQLite database only. The screenshot below, shows that the
ZCALLRECORD table is an empty table, with zero (0) records. This means that the
‘CallHistory.storedata’ SQLite database file (without the WAL) contains no records! All the
records have come from the WAL file. This allows you to infer the actual write (commit)
operations to the SQLite database file have not yet taken place.

With WAL | Without WAL JWAL Comparison

© Get Layout » Find Missing Records

My Queries Custom SQL

Tables
| x |

|% ZCALLDBPROPE A| : Show Fields ~
—1 Empty Table

ooty Tacle

Z 2REMOTEPAR
Empty Table
|E Z METADATA

1 records

|% Z_MODELCACHE

1 records

Z_PRIMARYKEY .,
i

Figure 26: ArtEx 1.5.1.0, Find Missing Records function has been run on ZCALLRECORD’ table (“CallHistory.storedata’
SQlite database), Without WAL tab.

25

Authored by Shafik G. Punja & lan Whiffin
V2.7

Trust but verify! The next screenshot shows the ZCALLRECORD table from ‘CallHistory.storedata’
SQLite database file (without the WAL), opened in DB Browser for SQLite. We just verified that
there are no records present in the actual database file.

® & DB Browser for SQLite - [Users, Desktop/CallHistory.storedata

N

', New Database P Open Database J ﬂ Open Project > % Att|

b

Database Structure Browse Data Edit Pragmas Execute SQL Edit Database Ci

Table: | [ZCALLRECORD $ | A s]

N

Z_PK‘ Z_ENT] Z_OPT‘ ZANSWERED \ ZCALL_CATEGORY | ZCALL

Mode: = Text s B =

Figure 27: DB Browser for SQLite 3.12.1 showing no records in the ZCALLRECORD table from ‘CallHistory.storedata’ SQLite
database file (without the WAL).

The ‘WAL Comparison’ tab provides a nice summary snapshot of all the tables in the SQlite
database, being examined, and record number count with WAL and without WAL.

Ak Viewer
Directory Tree
w () With WAL Without WAL
B Volum:
ZCALLDBPROPERTIES
Description With WAL Without WAL | Difference
First PK 1 NULL NULL
Last PK 1 INULL NULL
Total Records 1 0 1
ZCALLRECORD
Description With WAL Without WAL Difference
First PK 12 NULL NULL
Last PK 64 NULL NULL
Total Records 37 0 37

Figure 28: ArtEx 1.5.1.0 shows ‘CallHistory.storedata’ SQLite database, with identification of missing records

26

Authored by Shafik G. Punja & lan Whiffin
V2.7

mirf (missing record finder)

This is an agnostic, free open source script, developed using Python 3, by Sheran Gunasekera
which is available at https://github.com/sheran/mirf. The development of ‘mirf’ was inspired by
the missing record analysis features in ArtEx. In its current iteration, ‘mirf’ is only designed to
parse the ‘CallHistory.storedata’” and ‘sms.db’ SQLite database files that are exported from iOS
full file system extractions. It uses a predefined template to understand the structure of these
two aforementioned SQLite database files.

The following screenshot of the Terminal app (on macOS 11.1) shows Python 3.9.0 (invoked
through a pyenv environment) executing the ‘mirf.py’ script, to analyse a sms.db SQlite
database file (exported from Josh Hickman’s iOS 13.4.1 full file system (FFS) extraction) for
missing records. The analysis results are straight forward and easy to interpret. In this case 2
missing records are identified, including date ranges in UTC, and the missing record number.

mirf:3.9.0] ~/c/mirf -

) mirf.py JH_SMS

Parsing: i0S SMS DB f

First Record ID:

Last Record ID:

Last Record ID in message table according to sqlite_sequence table:
Total Records:

Missing Record Count:

Missing Records List:

1. 1 record(s) missing between Wed Mar 25 00:49:24 2020 (UTC) and Thu Mar 26 01:11:36 2020 (UTC).
Missing record numbers are: [12]

2. 1 record(s) missing between Mon Mar 30 ©08:15:36 2020 (UTC) and Wed Apr 1 17:39:22 2020 (UTC).
Missing record numbers are: [18]

Figure 29: mirf.py analyzing sms.db (exported from Josh Hickman’s iOS 13.4.1 full file system (FFS) extraction) which contains 2
missing records.

27

https://github.com/sheran/mirf

Authored by Shafik G. Punja & lan Whiffin

V2.7

The next screenshot shows the ‘mirf.py’ script being run (in the same environment as previously
noted), analysing the ‘CallHistory.storedata’ SQLite database files (exported from Josh Hickman'’s
i0S 13.4.1 full file system (FFS) extraction) for missing records. The analysis of this database
shows that there is a total of 28 missing records. The Missing Records List shows the details of all
missing records. For example, that records 1 through 11 are missing from before 20:02:52 on
23rd March 2020 (UTC). Also note that in relation to the Last Record ID value that was used for
ZCALLRECORD table is 65, relative to the Last Record ID value of 64 that is present. This means
the last record in the ZCALLRECORD table is missing.

Parsing:

JH CallHistoryDB/CallHistory.storedata

First Record
Last Record ID:

Last Record ID in ZCALLRECORD table according to Z_PRIMARYKEY table:

Total Records:
Missing Record Count:

Missing Records List:

11 deleted
Missing

deleted
Missing

deleted
Missing

deleted
Missing

deleted
Missing

deleted
Missing

record(s) before Mon Mar 23 20:02:52 2020 (UTC).

records are: [1, 2, 3,

record(s) between Mon
records are: [13, 14,

record(s) between Tue
records are: [17, 18,

record(s) between Fri
records are: [52, 53,

record(s) between Sun
records are: [57]

4, 5, 6, 7, 8, 9, 10, 11]

Mar 23 20:02:52 2020 (UTC) and Tue
15]

Mar 24 17:37:18 2020 (UTC) and Thu
19, 20, 21, 22, 23, 24, 25]

Apr 10 14:40:42 2020 (UTC) and Sun
54]

Apr 12 01:14:46 2020 (UTC) and Sun

record(s) after Tue Apr 14 15:56:12 2020 (UTC).

records are: [65]

24

26

17:37:18 2020 (UTC).

17:51:45 2020 (UTC).

01:13:23 2020 (UTC).

14:04:06 2020 (UTC).

Figure 30: mirf.py analyzing ‘CallHistory.storedata’ (exported from Josh Hickman’s iOS 13.4.1 full file system (FFS) extraction)
which contains 28 missing records.

It is anticipated that further development of ‘mirf.py” will take place to allow for a guided (versus
template) mode of analysis of missing records from any SQLite database. This method of analysis
would rely on the digital forensics practitioner, based on prompts from analysis tool, to identify

the relevant tables(s) and their respective fields to be analysed.

28

Authored by Shafik G. Punja & lan Whiffin
V2.7

Final Thoughts

The purpose behind the reader having to understand the pages of a sometimes dry and
somewhat challenging concept of SQLite databases, is to make the digital forensics practitioner
aware of the value of missing records analysis.

After processing and understanding the concepts explained in the previous pages, there are
generalized inferences about missing records, that can be explained as follows:

1. Anidentified missing record, that is after the most recent existing record, indicates with
high degree of professional certainty that the device user has intentionally deleted a
record.

2. Equally, a group of missing records that exist between a set of two existing records,
indicates with a high degree of professional certainty that the device user has
intentionally deleted these records.

3. Iftimestamps are present for existing records, this provides a temporal context relative
to the existing records, of when the missing/deleted records were originally created.

4. The exact date and time, a missing record was deleted cannot be ascertained.

5. Who performed the action of deleting records cannot be ascertained from the
identification of missing records alone.

6. If a database table is empty and missing records are identified, in conjunction with the
presence of the most recent record value in use, this would indicate with a high degree
of professional certainty that the device user has intentionally deleted these records.

While the absence of a record number signifies deletion of a row, it is incumbent on the digital
forensics practitioner to distinguish between system deleted or user deleted records. This can
only really be done by determining if the user has access to the database in question. For

a

example, a record from an SMS database would be deleted when the user deletes the message.

But system databases aren’t typically accessible to the user so deleted records here would be
assumed to be system deleted. Furthermore, if possible, application settings should also be
checked on the device and/or in the application structure (from the extracted data), in order to
determine how long data is specifically retained by that application. These settings can greatly
influence in determining whether the presence of missing records in an SQLite database are
caused by the actions of the device user or by the device itself.

Finally, thank you for taking the to read this article and we hope you enjoyed it and learned
concepts that you can use your digital forensics tradecraft!

29

Authored by Shafik G. Punja & lan Whiffin

V2.7

Sou rces/Refe rences

1. SQlLite: https://www.sglite.org/index.html

2. SQlite Application File Format: https://www.sqlite.org/aff short.html

3. SQLlite Archive Files: https://www.sglite.org/sglar.html

4. wal and shm files : https://www.sqglite.org/walformat.html

5. Temporary Files Used By SQLite: https://sqlite.org/tempfiles.html

6. Write-Ahead Logging: https://www.sglite.org/wal.html

7. Clustered Indexes and the WITHOUT ROWID Optimization:
https://www.sglite.org/withoutrowid.html

8. Sanderson, P. (2018). SQLite Forensics (1% ed.). Paul Sanderson.
Page 268 Paraphrased: The ROWID value, is an integer primary key that is defined as autoincrement. This
ensures that each new record added to the database will have a unique key that is one more than the
previously used maximum value. The ROWID integer primary key values are therefore contiguous, with no gaps
in the integer values.

9. Sanderson, P. (2018). SQLite Forensics (1° ed.). Paul Sanderson.
Page 69 Paraphrased: Implemented in SQLite version 3.3.5, ‘secure_delete’ status is not stored in the SQlite
database; when investigating an SQLite database, there is nothing that a digital forensics practitioner can check
to ascertain if secure delete is enabled. If an SQLite database is compiled with the ‘secure_delete’ option, then
deleted records are overwritten with zeroes.

10. SQLite POCKET REFERENCE GUIDE (by Lee Crognale, Heather Mahalik and Sarah Edwards):

https ://digital-forensics.sans.org/media/SQlite-PocketReference-final.pdf

30

https://www.sqlite.org/index.html
https://www.sqlite.org/aff_short.html
https://www.sqlite.org/sqlar.html
https://www.sqlite.org/walformat.html
https://sqlite.org/tempfiles.html
https://www.sqlite.org/wal.html
https://www.sqlite.org/withoutrowid.html
https://digital-forensics.sans.org/media/SQlite-PocketReference-final.pdf

Authored by Shafik G. Punja & lan Whiffin
V2.7

11. The iPhone Data Recovery Myth: What You Can and Cannot Recover (July 10th, 2020 by Oleg
Afonin): https://blog.elcomsoft.com/2020/07/the-iphone-data-recovery-myth-what-you-
can-and-cannot-recover/

“Your text messages and iMessages are stored in a database in the SQLite format. By default, SQLite does not
overwrite records immediately after they’'ve been deleted. Instead, SQLite marks them as “deleted”. Deleted
pages become unused and are stored on what is called a “freelist”. If you obtain the database files (by making a
backup), these records can be recovered until the moment the database is fully vacuumed and defragmented (if
it is, the deletion becomes permanent). This used to be the case in i0S 8 through iOS 11. Starting with i0S 12,
Apple seemingly moved to a non-standard implementation, physically wiping records almost immediately after
they are deleted. As a result, deleted text messages and iMessages cannot be recovered in iOS 12, 13 and
newer.”

“The one problem of recovering deleted records (be it messages, call logs or contacts) is the volatile nature of
SQlite databases in modern versions of iOS. The only easy way to obtain SQLite databases from the device is
making an iTunes backup. Until you make the backup, the databases are used with unmerged WAL (write-ahead
logs), and However, the very moment you initiate the backup, the SQLite databases are merged, and the
deleted records are lost forever.”

12. SQLite Autoincrement: https://sglite.org/autoinc.html

13. ArtEx by lan Whiffin (registration required): https://www.doubleblak.com/

14. Josh Hickman’s iOS 13.4.1 Public Image: https://thebinaryhick.blog/?s=13.4.1

15. Missing Record Finder Python 3 script, mirf.py: https://github.com/sheran/mirf

Acknowledgements

The authors would like to thank Sheran Gunasekera for taking the time to review this article and
providing guidance. Over 10 years ago Sheran and Shafik collaborated extensively on BlackBerry
Forensics research and recovery of SQLlite deleted records.

Sheran is also the author of two Android App Security books:

1. Blue Team perspective published in September 2012.
Android Apps Security Blue:
https://www.amazon.ca/Android-Apps-Security-Sheran-Gunasekera/dp/1430240628

2. Red Team perspective published November 2020:
Android Apps Security: Mitigate Hacking Attacks and Security Breaches
https://www.amazon.ca/Learn-Android-Security-Stack-Zhauniarovich/dp/1484216814

31

https://blog.elcomsoft.com/2020/07/the-iphone-data-recovery-myth-what-you-can-and-cannot-recover/
https://blog.elcomsoft.com/2020/07/the-iphone-data-recovery-myth-what-you-can-and-cannot-recover/
https://sqlite.org/autoinc.html
https://www.doubleblak.com/
https://thebinaryhick.blog/?s=13.4.1
https://github.com/sheran/mirf
https://www.amazon.ca/Android-Apps-Security-Sheran-Gunasekera/dp/1430240628
https://www.amazon.ca/Learn-Android-Security-Stack-Zhauniarovich/dp/1484216814

	Missing SQLite Records Analysis
	Background
	SQLite Database Structure Basics
	The Record Number Autoincrements
	Deleted SQLite Records
	Missing SQLite Records
	Missing Record Analysis
	Missing Record Finder
	ArtEx
	mirf (missing record finder)

	Final Thoughts
	Sources/References
	Acknowledgements

